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Abstract—Enhanced accuracy in aircraft conflict detection
allows for more efficient use of the airspace and increased safety
levels. Trajectory prediction lies at the heart of most conflict
detection algorithms. By comparing the predicted trajectories of
different aircraft against each other, we can detect real threats
while avoiding false alarms. We show how trajectory prediction
tools that account for weather forecast errors can improve the
performance of a conflict detection scheme. Using information
from multiple aircraft at different locations and time instants,
wind forecast uncertainties are reduced increasing trajectory
prediction accuracy. We present a particle filtering algorithm
that can efficiently cope with the high dimensionality and the
non-linearity of the problem and show how using this algorithm
can improve considerably conflict detection rates in mid and
short term horizon encounters.

I. INTRODUCTION

The current Air Traffic Management (ATM) system is to a
large extent based on a rigidly structured airspace and a mostly
human-operated system architecture [1]. This could potentially
impose a constraint in the growth of air traffic, which is
otherwise expected to increase considerably the following
years [2]. Recent research efforts focus on integrating the
segregated airspace (following SESAR [3] in Europe and
NEXTGEN [4] in the US). In support of this effort, a large
variety of automation and decision support tools are being
developed to provide Air Traffic Controllers (ATCs) with more
accurate predictive information about aircraft trajectories, local
and national traffic flow, weather and routing.

Guaranteing safety in air travel remains the primary concern
in the future ATM. One important aspect in this direction is
the separation assurance between flight trajectories. When-
ever a prescribed minimum separation between two aircraft
is violated, a conflict occurs. For conflicts to be identified
and prevented, an automated mechanism for Conflict Detec-
tion (CD) is required. Once a conflict is predicted, either
a centralized [3] or a decentralized [5] Conflict Resolution
(CR) scheme can be used to resolve it; for an overview see [6].

CD is itself a challenging task and very often it is combined
with the CR task. Most common methods can be divided into
three major categories, based on the prediction horizon they
consider. Roughly speaking Long term Conflict Detection and
Resolution (CD&R) methods deal with horizons of more than
30 mins. Their main concern is typically flow management

problems. Mid term CD&R, accounts for prediction horizons
up to 30 mins. Finally, short term CD&R, deals with horizons
up to 10 mins.

For the conflict detection to be accurate, one should be
able to compute a reliable prediction of the trajectory of an
aircraft [7]. Increasing levels of traffic require systems that can
accurately predict conflicts earlier, in order to accommodate
the extra traffic demand. An automated conflict detection
mechanism can take advantage of data that might not be
directly accessible, or possibly hard to interpret, by the air
traffic controllers, such as the estimated state of the aircraft,
weather information and weather uncertainty or different air-
craft performance models. This information combined with
the data that an air traffic controller has access to, like
the estimated position and aircraft flight plans, can lead to
an algorithm that improves Trajectory Prediction (TP) and
assists the Air Traffic Controller (ATC) in identifying early
potential conflicting situations. The longer the horizon the
aircraft trajectory is accurately predicted, the more flexibility
the ATC (or a conflict resolution algorithm) has to resolve a
conflict, or to accommodate more traffic.

Here we demonstrate how CD can be improved by reducing
TP inaccuracies related to wind forecast errors. The problem
of extracting the wind forecast error information from the
trajectories of the aircraft is formulated as a filtering problem.
The state that has to be estimated is high dimensional, since it
comprises the states (position and heading) of all aircraft in the
region of interest, as well as the wind forecast error (projected
on a grid). The situation is further complicated by the fact
that the aircraft dynamics, through which the wind forecast
error is indirectly observed, are nonlinear. This implies that
efficient filtering methods (such as the Kalman filter [8]) are
inapplicable in this case, whereas methods that could cope
with nonlinear dynamics (such as the Particle Filter (PF) [9])
have difficulties dealing with high dimensional states. To solve
the problem a novel particle filtering algorithm is developed
(called Sequential Conditional Particle Filter (SCPF)) that can
deal with both the nonlinear and the high dimensional nature
of the problem. For this, the special structure afforded by
the filtering problem is exploited, namely the fact that wind
forecast error dynamics are linear and conditional on the wind,
the dynamics of the different aircraft are independent.
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The performance of the proposed algorithm is assessed
with a series of simulated feasibility studies. A base sce-
nario involving 2 aircraft flying level with constant airspeed
is established. A series of different wind forecast errors is
generated which result in potential conflicts. The algorithm
shows a significant improvement over the non-filtered wind-
forecast especially for the mid-term prediction horizon (20-
15 minutes). A further improvement can be achieved when
additional aircraft precede the flight of interest.

The rest of the paper is organized as follows. Section II
briefly describes the aircraft and wind models used for the
simulations. Section III introduces general nonlinear filtering
and Particle Filters and outlines the proposed algorithm. Fi-
nally, Section IV provides simulation results that document
the performance of the proposed method. The paper concludes
with Section V which states the conclusions of this study and
some ideas for future work.

II. MODEL DYNAMICS

We present a Point Mass Model (PMM) that simulates
the dynamics of a commercial aircraft from the point of
view of an air traffic controller. The model is framed in
the context of stochastic hybrid systems and is capable of
capturing multiple instances of flights, each with a different
flight plan, aircraft dynamics and flight management system.
The dynamics capture the effect of the wind and the wind
forecast error, which is treated as a stochastic disturbance to
the model.

A. Aircraft Dynamics

The model presented here concentrates on level flights with
constant airspeed and is a simplified version of a full model
(including varying airspeed, altitude, and control of flight
path angle) developed in our earlier work [10], [11]. The
dynamics of the aircraft are characterized by the following
state vector z =

[
X, Y, ψ, m,

] ∈ R
4 where X

and Y are the position of the aircraft in the West-East and
South-North direction, respectively, m denotes the mass of the
aircraft and ψ its heading. We assume that each aircraft flies
with known, constant True Airspeed (TAS) which depends on
aircraft type and altitude. Figure 1 depicts the major variables
of the model. The relation between the states is nonlinear and
depends also on the actions of the Flight Management System
(FMS). The values of different parameters (for example the
TAS, the lift and drag coefficients, or fuel burn coefficient)
which depend on aircraft type, the phase of flight and aircraft
configuration are obtained from the Base of Aircraft Data
(BADA) database [12]. The movement of the aircraft is also
affected by the wind which acts as a disturbance. Thus, the
equations of motion, for level flight, become

⎡
⎢⎢⎢⎣

Ẋ(t)
Ẏ (t)

ψ̇(t)
ṁ(t)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

V cos(ψ(t)) + wX(t)
V sin(ψ(t)) + wY (t)
CLSρ(Z)V sin(φ(t))

2m(t)
−ηT (t)

⎤
⎥⎥⎥⎥⎦ . (1)

θ

d

wX

wYΨ

Fig. 1. The aircraft FMS tracks the flight plan between two subsequent
way-points, in the presence of wind. The cones represent the direction and
magnitude of the wind at different locations. Ψ denotes the nominal heading.

CL is the lift coefficient, S represents the surface of the wings,
ρ(·) the air density depending on altitude (Z). While V is
the true airspeed, (φ) the bank angle and η the fuel burn
coefficient. The values of the parameters (including the TAS)
which depend on aircraft type, the phase of flight and aircraft
configuration are obtained from the BADA database [12].

B. Flight Management System

The FMS measures the state of the aircraft and guides it
along the flight plan by determining the values of the inputs.
One of its two components is controlling along track and
vertical motion (in our case maintaining constant altitude and
airspeed) through the thrust and flight path angle and the
other is controlling cross track motion through the bank angle.
To ensure constant airspeed the thrust is set equal to the
drag force, whereas to ensure level flight we assume that the
flight path angle is set to zero. The bank angle is set using
a nonlinear feedback controller which corrects cross track
deviations from the flight plan encoded through heading (θ)
and cross-track errors (d) in Figure 1. Details of the design of
these controllers are given in [10], [11]. The aircraft dynamics
and the control inputs applied by the FMSare affected by
a change in the discrete part of the dynamics. The discrete
dynamics arise from the flight plan of the aircraft and the
logic variables embedded in the FMS. For more details the
reader is referred to [10]–[12].

C. Radar Model

The position of all aircraft is measured using a ground
radar. We assume that the radar measurements are corrupted by
noise. In practice the accuracy of the radar usually decreases as
an aircraft moves away from the radar location. For simplicity,
we use the same measurement error statistics for all distances,
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Fig. 2. Example of wind forecast error on a single flight level. The intensity of the color from blue to red indicates a low to high wind forecast error
magnitude respectively. The left image displays the initial wind-field. while the right the evolution of the wind-field after 20 minutes. The horizontal grid
resolution is 30x30km

and select the variance high enough (σr = 80m) to ensure we
err on the side of caution.

D. Wind Model

The uncertainty in the flight trajectory is greatly affected
by inaccurate meteorological forecasts [13], [14]. We model
the wind as a sum of two components: a nominal component
(representing weather forecasts) and a stochastic component
(representing forecast errors).

1) Wind Forecast: The nominal part of the wind-field
represents the meteorological predictions that are available to
the ATC. We obtain those meteorological data from the Rapid
Update Cycle (RUC), a numerical weather prediction model
for the U.S.A. [15]. The RUC model is run every three hours
and each run produces a set of three hourly forecasts.

2) Wind Forecast Error Statistics: We model the wind
forecast errors as a random field: w : R × R

3 → R
2 where

w(t, P ) represents the wind at point P ∈ R
3 and at time

t ∈ R. Since we restrict attention to level flights we ignore
wind in the vertical direction. For simplicity, here we restrict
attention to the case where w(t, P ) ∈ R

2 is Gaussian with
zero mean and covariance matrix R(t, P, t ′, P ′) ∈ R

2×2. We
calculate the covariance matrix, describing the spatiotemporal
correlation of the forecast error based on [16]. The correlation
decays exponentially with horizontal distance, altitude and
time difference. The data suggest a strong correlation between
wind errors in the same horizontal plane, a very strong
correlation in time and a weaker correlation across different
altitudes.

To describe the wind-field we grid the airspace into a lattice
comprisingNX points in the South-North direction,NY points
in the East-West direction and NZ points vertically. For each

grid point in the lattice we generate two random numbers,
one for the South-North and one for the East-West direction
of the wind forecast error. We store these numbers in two
vectors WX(k) and WY (k) , at time step k ∈ N (every δt

seconds). An example of the horizontal part of the lattice can
be seen in Figure 2.

Let R̂ ∈ R
NXNY NZ×NXNY NZ denote the covariance matrix

of WX(k) (by the isotropic assumption, the matrix will be
identical for WY (k)). We generate wind samples using the
following linear Gaussian model

WX(0) = Q̂vX(0), WX(k + 1) = aWX(k) +QvX(k + 1),

WY (0) = Q̂vY (0), WY (k + 1) = aWY (k) +QvY (k + 1),
(2)

where vX(k), vY (k) ∈ R
NXNY NZ are standard (zero mean,

identity covariance matrix) independent Gaussian random vari-
ables. Q and Q̂ are derived by Cholesky Decomposition from
the covariance matrix R̂ according to

QQT = (1 − a2)R̂ and Q̂Q̂T = R̂. (3)

It is easy to show that the covariance matrices of the resulting
vectors for an appropriate choice of a (we set a = e−δt/Gt ∈
R, where Gt is a parameter of the time correlation [16])
closely resemble the structure implied by the spatiotemporal
correlation. Linear interpolation of the wind at the neighboring
grid points is used to compute the wind forecast error between
the grid points, details can be found in [17].

III. NONLINEAR FILTERING

Problems in engineering applications often require the ac-
curate estimation of the state of a system that evolves in time,
using a sequence of noisy observations that become available
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Fig. 3. Example of continuous probability density function (left) and its particle approximation (right). The location and weight of the particles reflect the
value of the probability density in that region of the state space.

on-line. For several cases, it is important to include elements of
nonlinearity and non-Gaussianity in order to accurately capture
the underlying dynamics of the physical system. Moreover,
for real time performance it is usually required to process
data as they arrive, both from the point of view of storage but
mainly for keeping the computational complexity manageable.
Filtering algorithms perform such on-line data assimilation to
generate estimates of the state [18], [19].

The starting point is typically a discrete time model of the
dynamics of the process and the measurements of the form

x(k + 1) = f(x(k), v(k), k)
y(k) = h(x(k), n(k), k), (4)

where x(k) ∈ R
n and y(k) ∈ R

p are the state and output of
the system at time k ∈ N, and f : R

n × R
n × N → R

n and
h : R

n × R
p × N → R

p are (possibly nonlinear) functions.
v(k) ∈ R

n and n(k) ∈ R
p are process and measurement noise,

which are generally assumed to be independent, identically
distributed stochastic processes, but not necessarily additive, or
Gaussian. We also assume that the initial state is independent
of the noise processes and its distribution is given through a
Probability Density Function (pdf) p(x(0)). If the pdf of the
noise processes are known, the system of can be equivalently
represented using two pdf

x(k) ∼ px(·|x(k − 1), k)
y(k) ∼ py(·|x(k), k) .

(5)

Here px(·|x(k − 1), k) is a conditional pdf that models the
stochastic dynamics of the state of the system, determined by
f and the pdf of v(k), while py(·|x(k), k) is a conditional
pdf that models the probability distribution of the measure-
ments, determined by h and the pdf of n(k).

Given k, k′ ∈ N let Y(k′) = {y(i)}i=0,...,k′ denote
the sequence of measurements up to time k ′ and X(k) =
{x(i)}i=0,...,k denote the sequence of states up to time k.
The aim is to estimate the pdf p(X(k)|Y(k ′)). This density

function embodies our best estimate of the state vector up
to time k given all available information up to time k ′.
Depending on the relation of k to k ′ we can formulate three
different types of estimation problems; Filtering (k = k ′),
Prediction (k > k′), Smoothing (k < k′). These can be
solved recursively by invoking Bayes’ theorem.

A. Particle Filters

The analytical solution of the optimal Bayesian estimate
is not always possible, since the integrals involved are sel-
domly tractable. In the general case we need to approximate
numerically the pdf of interest. Particle filters (or Sequential
Monte Carlo methods [9]) are fast estimation techniques
that perform this numerical approximation using simulation.
The main idea is to approximate the continuous probability
distribution of interest using a discrete distribution comprising
weighted samples (known as particles, Figure 3). To do this
we extract N independent identically distributed particles,
X

1(k), . . . ,XN (k) from p(X(k)|Y(k)), and construct an em-
pirical estimate of the distribution

p̂(X(k)|Y(k)) =
1
N

N∑
i=1

δXi(k)(X(k)) , (6)

where δXi(k) denotes the Dirac mass at particle X
i(k). We can

then approximate the expectation of any integrable function,
g, by

E[g(X(k), k)] ≈
∫
g(X(k), k)p̂(dX(k)|Y(k)) (7)

=
1
N

N∑
i=1

g(Xi(k), k) . (8)

It can be shown that this estimator is unbiased and (under
weak assumptions) converges to the true expectation as the
number of particles N tends to infinity [20].

Particle filters suffer from what is known as curse of
dimensionality [21] which makes their use in high dimensional
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Fig. 4. Flight plans for two (left) and 6 aircraft (right).

problems difficult. Our simulations suggest that most particle
filtering algorithms cannot handle efficiently both the high
dimensionality of the wind state and the nonlinearities in
multi-aircraft dynamics [22].

B. Sequential Conditional Particle Filter

To solve the problems linked to particle filtering we have
developed a novel algorithm (which we call Sequential Con-
ditional Particle Filter (SCPF), first introduced in [17]) that
can deal with both the nonlinear and the high dimensional
nature of the problem. To achieve this we exploit the special
structure of the problem, namely the fact that wind forecast
error dynamics are linear and that, conditional on the wind,
the dynamics of the different aircraft are independent. The
SCPF shares some of the insights of the Marginalized Particle
Filter (MPF) [23], in the sense, that both treat the linear and the
non-linear part of the state separately. The two main novelties
compared with the MPF is the sequential incorporation of
information from different aircraft and the substitution of
particles carrying uncertainty realizations by particles carrying
conditional distributions.

The algorithm exploits the fact that the aircraft states evolve
according to non-linear dynamics, while the wind states evolve
according to linear dynamics. Moreover, the evolution of the
wind states is independent of the evolution of the aircraft
states and the evolution of the states of different aircraft are
only coupled to each other only through the wind states.
The first two observations imply that the wind states should
be easier to estimate, since under Gaussianity assumptions,
storing and manipulating them only requires keeping track
of their mean and covariance matrix. Moreover, given a
probabilistic estimation of the wind at some points in the
wind-field, we can explicitly derive the conditional distribution
of the wind at all other points. This distribution will also
be Gaussian, hence easy to store and manipulate. This way
every aircraft acts as an indirect local sensor of the wind.
The first novelty of the proposed algorithm is that, instead

of using realizations for the wind states in our particles (as
in conventional particle filtering) we store and manipulate
the entire conditional probability distribution. The latter two
observations imply that, conditional on the wind states, the
states of different aircraft are independent of each other. This
is exploited by the second novelty of our algorithm, which is
the sequential incorporation of the information from different
aircraft. Every radar measurement contains information about
the positions, of all aircraft in a region of the airspace, but
new measurements are processed one aircraft at the time. The
complete algorithm is reported in [17].

IV. SIMULATION RESULTS

We have devised a series of simulations to demonstrate the
performance of the new algorithm. Two aircraft approach each
other with an angle of 45o. Nominally, without any wind
forecast error, the two aircraft exhibit minimum separation
(5nmi) after 25 minutes of flight. To demonstrate the algorithm
can also exploit information from additional aircraft that
happen to be present in the airspace we have created an
additional scenario with 6 aircraft in total. The flight plans
for the two cases can be seen in Figure 4.

Aircraft fly level at 10000m altitude with a nominal airspeed
of 419 knots, and there are no turns included in the flight
plans. The parameters of the dynamical models for all aircraft
represent a Boeing 737-700. Flights have a duration of ap-
proximately 30 minutes and radar measurements arrive every
30 seconds. We simulate these flights under 1000 different
wind forecast error realizations. Figure 5 demonstrates the
significance of the forecast error. The different scenarios
exhibit, on average, their minimum separation after 25 minutes
(1500s) as in the nominal case, but the range is now from 1440
to 1570s. For the same flight plan, there exist wind forecast
errors for which the separation drops to 0.03 nmi and others
for which it reaches 14 nmi. In total, out of the 1000 scenarios,
509 will result in conflict (conflict is 5nmi).

In order to benchmark the efficiency of the algorithm we
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Fig. 5. Time evolution of the separation between the two aircraft for different
scenarios of wind forecast errors. Blue lines represent conflicts and green lines
represent scenarios where a safe separation distance was kept throughout the
flight.

compare with two benchmarks. The first one (called “ag-
nostic”) evaluates the conflict detection rates with only wind
forecasts available, without any filtering performed. This is the
general case in current practice. The second (called ’perfect’)
evaluates the conflict rates given perfect information about the
wind-field all over the airspace at the current point in time. The
TP uncertainty in this case is only due to the time evolution
of the wind-error, which is unpredictable given the current
state. This is clearly an unrealistic, perfect filtering situation
and constitutes an optimal, best case performance bound for
the proposed algorithm.

The algorithm is run using 1000 particles for the 2 and
6 aircraft case for each of the 1000 wind forecast error
scenarios. Having used the algorithm to filter 5, 10 and 15
minutes of data (so 20,15 and 10 minutes before estimated
time of minimum separation) we extrapolate the state estimate
of all particles into the future to get an estimate of the future
trajectory for each aircraft. We calculate, for each particle the
distance of the two aircraft for every second and evaluate the
minimum separation throughout the flight. Since each particle
will exhibit a different minimum separation, there will be
particles for which a conflict has occurred and particles with
no conflict for the same wind forecast error scenario. We use
the ratio of particles with conflict over the total number of
particles as our estimate for the probability of conflict for this
scenario.

The results are presented as distributions, using histograms.
For each scenario, the algorithm estimates a probability of
conflict. We display the results for the scenarios where a
conflict actually happened in Figure 6. A distribution skewed
to the right implies that most of the conflicts (out of the 509)
where identified with high probability. The perfect case would
be all 509 cases in the 95 − 100% probability bin. For the
scenarios that are placed in each bin the average minimum
separation is computed. Minimum separation is defined as the

minimum distance throughout the flight, for the real scenarios.
The agnostic case predictions, Figure 6(a), for 20 and

15 minutes before estimated conflict provide a quite flat
distribution. This implies that most of the conflicts are not
identified with high probability. The improvement over the
agnostic case even only after 5 minutes of flight (20 minutes
before conflict) is quite strong for 2 aircraft and becomes even
greater when we employ 6 aircraft. This continues for 10 and
15 minutes of filtering and shows the contribution of more
aircraft in the airspace. However, after 15 minutes of filtering,
adding more aircraft does not significantly increase the conflict
detection rate. It is important to note that the 6 aircraft case
is not far from the upper margin of performance indicated by
the perfect information case, Figure 6(d). Note that even 10
minutes before the conflict there still exist conflicts that are
not well identified. SCPF for some cases provides an estimate
of the probability of conflict as low as 10-20%. This is due to
the conflict being marginal, between 4.5 and 5nmi, Figure 6.
Accepting conflicts that breach 5.5 or 6nmi, would increase
margins, with an increase of false alarms of course, but in
some cases, this might be a suitable trade-off.

Finally, Figures 7, 8 (including all wind realizations) show
how the algorithm improves the estimation of the minimum
separation and the time at which it occurs. Standard deviation
for minimum separation error is 1.03 nmi and 11s for time
error in the agnostic case, while this improves to 0.36 nmi
and 2.7s for the 6 aircraft SCPF case. The ideal bound is 0.18
nmi and 1.9s for the perfect information case.

By choosing a probability threshold after which a scenario
is considered a conflict we can also estimate the false alarm
and successful alert probabilities. The following table shows
the result 10min before conflict for a threshold of 90%.

90% Threshold (Agnostic - 6-SCPF - Perfect)
Conflict No Conflict

Alert 51% - 80% - 94% 51% - 22% - 7%
No Alert 49% - 20% - 6% 49% - 78% - 93%

We observe quite a significant increase in the successful
alarms and respectively a decrease in false alarms when the
SCPF with 6 aircraft is employed, over the agnostic case.

V. CONCLUSION

A method for improving conflict detection (CD) was pre-
sented. The performance of the algorithm was tested in flight
plans including 2 and 6 aircraft. CD was improved consider-
ably using SCPF compared with the agnostic case where no
inference about the forecast error was made. The proposed
method manages to both increase the successful alerts and
reduce false alerts. Finally, simulations show how the error in
the estimates of minimum separation and time to minimum
separation are reduced.
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(b) SCPF with 2 aircraft
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(c) SCPF with 6 aircraft
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Fig. 6. Evolution of the conflict probability after 5 (left), 10 (middle), 15 (right) minutes of filtering, for scenarios where a conflict occurred. Red dots show
the average minimum separation distance for each percentage bin and black triangles the minimum among them - 500 signifies 5nmi for this metric.
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Fig. 7. Distribution of the time error to minimum separation after 15 minutes of filtering for different algorithms
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Fig. 8. Distribution of the distance error for minimum separation after 15 minutes of filtering for different algorithms
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